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1 Introduction

Superpositioning is a key technique in structural bioldggt Enables the comparison and analy-
sis of various conformational differences and commoreadiimong macromolecules with sim-
ilar structures. As such, superpositioning is used rolytimethe fields of NMR, X-ray crys-
tallography, protein folding, molecular dynamics, raibdrug design, and structural evolution
(Bourne and Shindyalov, 2003; Flower, 1999). The integireh of a superposition relies upon
the validity of the estimated orientations, and hence atewsuperpositioning tools are an es-
sential component of modern structural analysis.

In the classical molecular biology approach, structuresraferred to a common reference
frame using the conventional statistical optimization moelt of ordinary least-squares (OLS)
(Flower, 1999). The OLS criterion stipulates that the oplimotations and translations are
those that minimize the squared distances among corresgpatbms in the structures being
analyzed. As a theoretical justification for OLS, the GaMisskov theorem requires both ho-
moscedastic and uncorrelated data. However, both reqeirenare generally violated in the
case of macromolecules. The variances of backbone atom$/iR Blperpositions, for in-
stance, commonly span greater than three orders of magnifearthermore, adjacent atoms
typically covary strongly due to covalent chemical bondd ather physical interactions. In
practice, researchers usually perform a OLS superpositientify regions that do not “super-
position well”, and calculate a new superposition in which more variable regions have been
subjectively excluded from the analysis.

In previous work, we relaxed the assumptions of homosceitgsind noncorrelation by treat-
ing the superposition problem within a likelihood framewarhere the macromolecular struc-
tures are distributed normally (Theobald and Wuttke, 20662008). In our non-isotropic like-
lihood treatment, superpositioning requires estimating @lasses of parameters: (1) a mean
structure, (2) a global covariance matrix describing thveavee and correlations for each atom
in the structures, (3) hierarchical parameters descrithiegcovariance matrix, and, for each
structure in the analysis, (4) a proper orthogonal rotatm@atrix and (5) a translation vector.
Our ML method accounts for uneven variances and correlaiiothe structures by weighting
by the inverse of the covariance matrix.

Estimation of the covariance matrix has been a significapegiiment to a viable non-isotropic
likelihood-based Procrustes analysis (Dryden and Mad#i88; Lele and Richtsmeier, 1990;
Lele, 1993; Lele and Richtsmeier, 2001; Glasbey et al., 1@®dall, 1991b, 1995). Simul-

taneous estimation of the sample covariance matrix andréimslations is generally impossi-
ble. We permit joint identifiability by regularizing the catrance matrix using a hierarchical,
empirical Bayes treatment in which the eigenvalues of thegance matrix are themselves
distributed according to an inverse gamma pdf.
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In general all the estimates of the unknown parameters seadgpendent and cannot be solved
for analytically. Furthermore, the smallest eigenvaludb® sample covariance matrix are zero
due to colinearity imparted by the centering operation sgagy to estimate the unknown trans-
lations. We treat these smallest eigenvalues as “missiiad dsing an expectation-maximization
algorithm. For simultaneous estimation, we use iteratovgd@tional maximization of the joint
likelihood augmented by the expectation-maximizatioroatym. This method works very
well in practice, with excellent convergence propertiedfie many hundreds of real cases ana-
lyzed to date. An example of a conventional LS superpost@npared with our ML estimate
is shown in Figure 1.

Figure 1. A conventional LS superpositioms the ML superposition denter andright) of 30 NMR
models of the 71 amino acid Kunitz domain 2 of Tissue FactdnWway Inhibitor (PDB ID: ladz). All
C.s were included in the calculations.

2 A matrix normal probability model for the macromolecular superposi-
tion problem

ConsiderN structuresX;,i = 1...N), each withK corresponding atoms (landmarks), where
each structure is defined agiax D matrix holding K rows of D-dimensional coordinates. We
assume a probabalistic model for the Procrustes problentnichneach formX; is distributed
according to a Gaussian probability density and is observedlifferent unknown coordinate
system (Dryden and Mardia, 1998; Goodall, 1991a, 1995). W deterogeneous variances
and correlations among the atoms in the structures, asibleddry a/ x X' covariance matrix
for the atoms. Under this Gaussian model, eXgltan be considered as an arbitrarily scaled,
rotated, and translated zero-mean Gaussian matrix dap@attE; ~ Nk (0,X, E) of the
mean structurd1,

X, =(M+E)R]— 1gt, (1)
wheret; is aD x 1 column vector for the translational offset, ahg denotes thé{ x 1 column
vector of ones.

3 A Procrustes matrix normal likelihood equation

The full joint likelihood equation for the model given in (I§ obtained from a multivariate
matrix normal distribution Arnold, 1981;Dutilleul, 1999)efine

then

p(X[R,t, M, %) = (2r) %" []7% exp (-% D {[¥ - MBI - M]}) ?)
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4 A Bayesian extension

The likelihood analysis described above does not providdyrestimates of the uncertainty in
the estimated parameters. Hence, an extension of the mietlaoiill Bayesian analysis would
be useful, and would also allow for the incorporation of otphgor data (e.g., B-factors, an
empirical measure of uncertainty, attached to each atontigsdal structure).

For our Bayesian analysis we assume fiaM, R, t are all independent, so that
P (X, MR, #X) < p(X|Z,M,R,t)p(Z)p(M)p (R)p(t) 3)
We will also occasionally assume a hierarchical prior¥or

P (X) xp (X, n)p(¢) (4)

We have solved the MAP estimates for our Bayesian superpositodel, and we are currently
in the process of coding a Gibbs sampling algorithm for tHe Bayesian solution. When
using improper reference priors it is critical to establitb propriety of the posterior. We
have shown that the posterior is proper in the isotropic ¢emeesponding to the classic OLS
assumptions) when using uniform priors dfi and the translations and placing a standard
improper reference prior on the variance. However, in th@sadropic treatment, the standard
reference priors on the variance hyperparameters lead tmp@moper posterior, and so here
we use vague proper priors. In the following we present theditimnal distributions of the
unknown parameters.

41 Mean

The conditional distribution of the meavi, given a flat prior f (M) « C), is:

p(M|X, X, R, t) o exp (-% iv:tr {[Y; - M'S"Y, - M]}) (5)
which is a matrix normal distribution.
4.2 Trandlations
The conditional distribution of the translatiohsgiven a flat prior f (¢) «x C), is:
p (t:]Xi, M, 3, R;) o< exp <—tr {X{Z " 1kt)} — %tr {til}(z‘lth;}) (6)
assumingR;,M'X "1, = 0. This is a multivariate normal distribution.
4.3 Rotations
The conditional distribution of the rotatiod®;, given a proper uniform prion((R;) o C):
p(R;|X;, X, M, t;) x exp <—% tr {M’E—lxiRi}) (7)
which is a matrix von Mises-Fisher distribution.
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4.4 |sotropic covariance matrix

The conditional distribution of an isotropic covariancetma(Xis, = ¢I), given a reference
prior (p (¢) o %), is:

p(8X, =, M, R, t) oc ¢~ (2 +) exp (—% Ztr{[Y,- — MJ[Y; - M]}) 8)

which is an inverse gamma distribution. This solution cgpands to the Bayesian version of
the traditional OLS superposition solution.

45 A Diagonal Inverse Wishart prior for a diagonal covariance matrix (multivariate
scaled inver se chi square)

In the following we assume the covariance matrix is diag¢Ratliagonal):

LT§
I (3)

p(X|¥,n, K)= Kexp{—%tr (\112—1)} (9)

nkK

272 |2

4.6 Conditional probability for the covariance matrix X

If we further assume that the hyperparameters isotropic (i.e., & = ¢I), then we have a
simple expression for the conditional distribution of tlew&riance matrix:

3N+n+2

p(ZIX, M, R, t,6) < [B " 7 ¢ ztr(37S+o1) (10)

where
1 N
S = 5Ztr{m—1\/1]/[3(24—1\4]} (11)
This is simply another multivariate scaled inverse chieggudistribution.

4.7 Conditional probability of the variance hyper parameter ¢

The “conventional” reference prior for the variance hyegmeter i (¢) #) leads to an
improper posterior, so we adopt a vague proper conjugabe pni¢ (a scaled chi-square with
parametersy, m):

p(olam) 0”7 exp { - | (12)
p(o0|X, 3, M,R,t,n) x qb"KgmiQ exp {—g {tr (E_l) + é} } (13)

which is a gamma distribution (or a scaled chi-square).
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