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1 Introduction

Superpositioning is a key technique in structural biology that enables the comparison and analy-
sis of various conformational differences and commonalities among macromolecules with sim-
ilar structures. As such, superpositioning is used routinely in the fields of NMR, X-ray crys-
tallography, protein folding, molecular dynamics, rational drug design, and structural evolution
(Bourne and Shindyalov, 2003; Flower, 1999). The interpretation of a superposition relies upon
the validity of the estimated orientations, and hence accurate superpositioning tools are an es-
sential component of modern structural analysis.

In the classical molecular biology approach, structures are referred to a common reference
frame using the conventional statistical optimization method of ordinary least-squares (OLS)
(Flower, 1999). The OLS criterion stipulates that the optimal rotations and translations are
those that minimize the squared distances among corresponding atoms in the structures being
analyzed. As a theoretical justification for OLS, the Gauss-Markov theorem requires both ho-
moscedastic and uncorrelated data. However, both requirements are generally violated in the
case of macromolecules. The variances of backbone atoms in NMR superpositions, for in-
stance, commonly span greater than three orders of magnitude. Furthermore, adjacent atoms
typically covary strongly due to covalent chemical bonds and other physical interactions. In
practice, researchers usually perform a OLS superposition, identify regions that do not “super-
position well”, and calculate a new superposition in which the more variable regions have been
subjectively excluded from the analysis.

In previous work, we relaxed the assumptions of homoscedasticity and noncorrelation by treat-
ing the superposition problem within a likelihood framework where the macromolecular struc-
tures are distributed normally (Theobald and Wuttke, 2006a,b, 2008). In our non-isotropic like-
lihood treatment, superpositioning requires estimating five classes of parameters: (1) a mean
structure, (2) a global covariance matrix describing the variance and correlations for each atom
in the structures, (3) hierarchical parameters describingthe covariance matrix, and, for each
structure in the analysis, (4) a proper orthogonal rotationmatrix and (5) a translation vector.
Our ML method accounts for uneven variances and correlations in the structures by weighting
by the inverse of the covariance matrix.

Estimation of the covariance matrix has been a significant impediment to a viable non-isotropic
likelihood-based Procrustes analysis (Dryden and Mardia,1998; Lele and Richtsmeier, 1990;
Lele, 1993; Lele and Richtsmeier, 2001; Glasbey et al., 1995; Goodall, 1991b, 1995). Simul-
taneous estimation of the sample covariance matrix and the translations is generally impossi-
ble. We permit joint identifiability by regularizing the covariance matrix using a hierarchical,
empirical Bayes treatment in which the eigenvalues of the covariance matrix are themselves
distributed according to an inverse gamma pdf.
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In general all the estimates of the unknown parameters are interdependent and cannot be solved
for analytically. Furthermore, the smallest eigenvalues of the sample covariance matrix are zero
due to colinearity imparted by the centering operation necessary to estimate the unknown trans-
lations. We treat these smallest eigenvalues as “missing data” using an expectation-maximization
algorithm. For simultaneous estimation, we use iterative conditional maximization of the joint
likelihood augmented by the expectation-maximization algorithm. This method works very
well in practice, with excellent convergence properties for the many hundreds of real cases ana-
lyzed to date. An example of a conventional LS superpositioncompared with our ML estimate
is shown in Figure 1.

Figure 1: A conventional LS superpositionvs the ML superposition (center and right) of 30 NMR
models of the 71 amino acid Kunitz domain 2 of Tissue Factor Pathway Inhibitor (PDB ID: 1adz). All
Cαs were included in the calculations.

2 A matrix normal probability model for the macromolecular superposi-
tion problem

ConsiderN structures (Xi, i = 1 . . .N), each withK corresponding atoms (landmarks), where
each structure is defined as aK×D matrix holdingK rows ofD-dimensional coordinates. We
assume a probabalistic model for the Procrustes problem in which each formXi is distributed
according to a Gaussian probability density and is observedin a different unknown coordinate
system (Dryden and Mardia, 1998; Goodall, 1991a, 1995). We allow heterogeneous variances
and correlations among the atoms in the structures, as described by aK×K covariance matrixΣ
for the atoms. Under this Gaussian model, eachXi can be considered as an arbitrarily scaled,
rotated, and translated zero-mean Gaussian matrix displacementEi ∼ NK,D(0,Σ,Ξ) of the
mean structureM,

Xi = (M + Ei)R
′

i − 1Kt
′

i (1)

whereti is aD×1 column vector for the translational offset, and1K denotes theK×1 column
vector of ones.

3 A Procrustes matrix normal likelihood equation

The full joint likelihood equation for the model given in (1)is obtained from a multivariate
matrix normal distribution Arnold, 1981;Dutilleul, 1999). Define

Yi = (Xi + 1Kt
′

i)Ri

then

p (X|R, t,M,Σ) = (2π)−
3KN

2 |Σ|−
3N

2 exp

(

−
1

2

N
∑

i

tr
{

[Yi −M]′Σ−1[Yi − M]
}

)

(2)
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4 A Bayesian extension

The likelihood analysis described above does not provide ready estimates of the uncertainty in
the estimated parameters. Hence, an extension of the methodto a full Bayesian analysis would
be useful, and would also allow for the incorporation of other prior data (e.g., B-factors, an
empirical measure of uncertainty, attached to each atom in acrystal structure).

For our Bayesian analysis we assume thatΣ,M,R, t are all independent, so that

p (Σ,M,R, t|X) ∝ p (X|Σ,M,R, t) p (Σ) p (M) p (R) p (t) (3)

We will also occasionally assume a hierarchical prior forΣ:

p (Σ) ∝ p (Σ|φ, n) p (φ) (4)

We have solved the MAP estimates for our Bayesian superposition model, and we are currently
in the process of coding a Gibbs sampling algorithm for the full Bayesian solution. When
using improper reference priors it is critical to establishthe propriety of the posterior. We
have shown that the posterior is proper in the isotropic case(corresponding to the classic OLS
assumptions) when using uniform priors onM and the translationst and placing a standard
improper reference prior on the variance. However, in the nonisotropic treatment, the standard
reference priors on the variance hyperparameters lead to animproper posterior, and so here
we use vague proper priors. In the following we present the conditional distributions of the
unknown parameters.

4.1 Mean

The conditional distribution of the meanM, given a flat prior (p (M) ∝ C), is:

p (M|X,Σ,R, t) ∝ exp

(

−
1

2

N
∑

i

tr
{

[Yi −M]′Σ−1[Yi − M]
}

)

(5)

which is a matrix normal distribution.

4.2 Translations

The conditional distribution of the translationst, given a flat prior (p (t) ∝ C), is:

p (ti|Xi,M,Σ,Ri) ∝ exp

(

− tr
{

X
′

iΣ
−1

1Kt
′

i

}

−
1

2
tr
{

ti1
′

KΣ
−1

1Kt
′

i

}

)

(6)

assumingRiM
′
Σ

−1
1K = 0. This is a multivariate normal distribution.

4.3 Rotations

The conditional distribution of the rotationsRi, given a proper uniform prior (p (Ri) ∝ C):

p (Ri|Xi,Σ,M, ti) ∝ exp

(

−
1

2
tr
{

M
′
Σ

−1
X̌iRi

}

)

(7)

which is a matrix von Mises-Fisher distribution.
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4.4 Isotropic covariance matrix

The conditional distribution of an isotropic covariance matrix (Σiso = φI), given a reference
prior (p (φ) ∝ 1

φ
), is:

p (φ|X,Σ,M,R, t) ∝ φ−( 3NK

2
+1) exp

(

−
1

2φ

N
∑

i

tr {[Yi − M]′[Yi − M]}

)

(8)

which is an inverse gamma distribution. This solution corresponds to the Bayesian version of
the traditional OLS superposition solution.

4.5 A Diagonal Inverse Wishart prior for a diagonal covariance matrix (multivariate
scaled inverse chi square)

In the following we assume the covariance matrix is diagonal(Σ diagonal):

p (Σ|Ψ, n, K) =
|Ψ|

n

2

2
nK

2 |Σ|(
n

2
+1) Γ

(

n
2

)K
exp

{

−
1

2
tr
(

ΨΣ
−1
)

}

(9)

4.6 Conditional probability for the covariance matrix Σ

If we further assume that the hyperparameterΨ is isotropic (i.e.,Ψ = φI), then we have a
simple expression for the conditional distribution of the covariance matrix:

p (Σ|X,M,R, t, φ) ∝ |Σ|−
3N+n+2

2 e−
1

2
tr (Σ−1[S+φI]) (10)

where

S =
1

2

N
∑

i

tr {[Yi −M]′[Yi − M]} (11)

This is simply another multivariate scaled inverse chi-square distribution.

4.7 Conditional probability of the variance hyperparameter φ

The “conventional” reference prior for the variance hyperparameter (p (φ) ∝ 1
φa ) leads to an

improper posterior, so we adopt a vague proper conjugate prior onφ (a scaled chi-square with
parametersα, m):

p (φ|α, m) ∝ φ
m−2

2 exp

{

−
φ

2α

}

(12)

p (φ|X,Σ,M,R, t, n) ∝ φ
nK+m−2

2 exp

{

−
φ

2

[

tr
(

Σ
−1
)

+
1

α

]}

(13)

which is a gamma distribution (or a scaled chi-square).
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